Exercise 44

A lighthouse is located on a small island 3 km away from the nearest point P on a straight shoreline and its light makes four revolutions per minute. How fast is the beam of light moving along the shoreline when it is 1 km from P ?

Solution

Draw a schematic of the lighthouse's beam at a certain time.

The aim is to find $d x / d t$ when $x=1$. Use a trigonometric function to relate the angle θ with convenient sides of the triangle.

$$
\tan \theta=\frac{x}{3}
$$

Solve for x.

$$
x=3 \tan \theta
$$

Take the derivative of both sides with respect to time by using the chain rule.

$$
\begin{aligned}
\frac{d}{d t}(x) & =\frac{d}{d t}(3 \tan \theta) \\
\frac{d x}{d t} & =\left(3 \sec ^{2} \theta\right) \cdot \frac{d \theta}{d t} \\
& =3\left(\frac{r}{3}\right)^{2} \cdot 4(2 \pi) \\
& =3\left(\frac{r^{2}}{9}\right) \cdot 8 \pi \\
& =3\left(\frac{x^{2}+9}{9}\right) \cdot 8 \pi \\
& =\frac{x^{2}+9}{3}(8 \pi)
\end{aligned}
$$

Therefore, when the beam of light is 1 km from P, the beam is moving at

$$
\left.\frac{d x}{d t}\right|_{x=1}=\frac{(1)^{2}+9}{3}(8 \pi)=\frac{80 \pi}{3} \frac{\mathrm{~km}}{\min } \approx 83.7758 \frac{\mathrm{~km}}{\min } .
$$

